New test of the Einstein equivalence principle and the isotropy of space.
نویسندگان
چکیده
Recent research has established that nonsymmetric gravitation theories like Moffat’s NGT predict that a gravitational field singles out an orthogonal pair of polarization states of light that propagate with different phase velocities. We show that a much wider class of nonmetric theories encompassed by the χg formalism predict such violations of the Einstein equivalence principle. This gravity-induced birefringence of space implies that propagation through a gravitational field can alter the polarization of light. We use data from polarization measurements of extragalactic sources to constrain birefringence induced by the field of the Galaxy. Our new constraint is 108 times sharper than previous ones. 04.80.+z, 04.50.+h, 96.60.Tf Typeset using REVTEX
منابع مشابه
On the topological equivalence of some generalized metric spaces
The aim of this paper is to establish the equivalence between the concepts of an $S$-metric space and a cone $S$-metric space using some topological approaches. We introduce a new notion of a $TVS$-cone $S$-metric space using some facts about topological vector spaces. We see that the known results on cone $S$-metric spaces (or $N$-cone metric spaces) can be directly obtained from...
متن کاملEinstein structures on four-dimensional nutral Lie groups
When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...
متن کاملOn quasi-Einstein Finsler spaces
The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces. Quasi-Einstein metrics serve also as solution to the Ricci flow equation. Here, the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined. In compact case, it is proved that the quasi-Einstein met...
متن کاملWarped product and quasi-Einstein metrics
Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...
متن کاملInvariant Einstein Metrics on Flag Manifolds with Four Isotropy Summands
A generalized flag manifold is a homogeneous space of the form G/K, where K is the centralizer of a torus in a compact connected semisimple Lie group G. We classify all flag manifolds with four isotropy summands by the use of t-roots. We present new G-invariant Einstein metrics by solving explicity the Einstein equation. We also examine the isometric problem for these Einstein metrics. 2000 Mat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. D, Particles and fields
دوره 52 6 شماره
صفحات -
تاریخ انتشار 1995